Natural Products M. S. (Pharm.)

Semester I			
	CORE SUBJECTS (All COMPULSORY)		
Course Code	Course Name	Credits	
NP-510	Separation and Chromatographic Techniques	1	
NP-520	Phytochemistry	2	
NP-530	Synthetic Biology of Medicinal Plants and Agro-technologies	1	
NP-540	Biomimetic synthesis, Total synthesis, and Semi-synthesis of Natural Products-I	1	
MC-530	Spectral Analysis	1	
MC-540	Principle and Applications of NMR	1	
GE-510	Biostatistics	2	
GE-511	Seminar	0.5	
LG-510	General Laboratory Experience	2.5	
ELECTIVE SUBJECTS (FOR 4 CREDITS)			
EL-501	Biochemical Engineering Fundamentals	2	
EL-502	Biotechnology in Pharmaceutical Sciences	1	
EL-503	Industrial safety and green chemistry	1	
EL-504	Computer Application in Biomedical Engineering	1	
EL-505	Biological System Analysis and Control	1	
EL-506	Productivity in management and reengineering	1	
EL-507	Biosynthesis of Natural Products	1	
EL-508	Chemotherapy of Parasitic and Microbial Infections	1	
	Choose any core courses of other department (BT/MC/MD/PA/PC/PE)		

	Semester II		
	CORE SUBJECTS (COMPULSORY)		
Course Code	Course Name	Credits	
NP-610	Natural Products and Bio-organic Chemistry	2	
NP-620	Natural Products based Drug Discovery	2	
NP-630	Phytopharmaceuticals and its Standardization aspects	2	

NP-640	Structure Elucidation of Natural Products	2
NP-650	Biomimetic Synthesis, Total synthesis and semi synthesis of Natural Products – II	1
GE-611	Seminar	0.5
LS-610	General Lab Experience in the Area of Specialization	2.5
	ELECTIVE SUBJECTS (FOR 4 CREDITS)	
EL-601	Biomechanics	2
EL-602	Mathematical Methods in Biomedical Engineering	1
EL-603	Logistics & distribution	1
EL-604	Total quality control	1
EL-605	Lean system, 6 sigma	1
EL-606	Introduction to Ayurveda and Polyherbal Formulations	1
EL-607	Chemotherapy and Immunopharmacology	2
EL-608	Pharmacovigilance and Medical Writing	2
	Choose any core courses of other department (BT/MC/MD/PA/PC/PE)	

	Semester III	
TH- 598	Synopsis and Presentation	9
Semester IV		
TH-698	Thesis Writing and Thesis Defence	9
	TOTAL CREDITS (I TO IV SEMESTERS)	50

Table of Contents

Semester I	4
NP-510 (1 Credit)	
NP-520 (2 Credit)	6
NP-530 (1 Credit)	
NP-540 (1 Credit)	
EL-507 (1 Credit)	
Semester II	
NP-610 (2 Credit)	
NP-620 (2 Credit)	
NP-630 (2 Credit)	
NP-640 (2 Credit)	
NP-650 (1 Credit)	
EL-606 (1 Credit)	

Natural Products M. S. (Pharm.)

Semester I

NP-510 (1 Credit)

S. No.	Separation and Chromatographic Techniques	Hrs (20)
1	Separation Techniques: Need for learning separation techniques, separation techniques in natural product research and drug discovery, extraction techniques.	2
2	Chromatography: General principles, classification of chromatographic techniques, normal and reversed phase, bonded phase chromatography, stationary phases, activity of stationary phases, elutropic series, and separation mechanisms.	2
3	Column Chromatography: Column packing, sample loading, column development, and detection.	2
4	Flash and Vacuum Liquid Chromatography: Objectives, optimization studies, selection of column and stationary phases, selection of mobile phases. Automated flash chromatography, and reverse phase flash chromatography.	2
5	 High Pressure Liquid Chromatography (HPLC): Principles, instrumentation, peak shapes, capacity factor, selectivity, plate number and plate height, resolution, band broadening. HPLC Instrumentations: Pumps, injector, detectors, and columns. Column problems, gradient HPLC, HPLC solvents, trouble shooting, sample preparation, method development. 	2
6	Planar Chromatography – TLC/HPTLC/OPLC: Basic principles, sample application, development of plates, visualization of plates, 2D TLC, densitometry, and over pressure layer chromatography.	2
7	Counter-current Chromatography: Basic principles, droplet counter current chromatography, centrifugal partition chromatography, choice of solvents for SP and MP.	2
8	Gas Chromatography: Principles, instrumentation, split-splitless injector, head space sampling, columns for GC, detectors, and quantification.	2
9	Bio-chromatography: General principles, stationary phases and mobile phases of size exclusion chromatography, ion exchange chromatography, ion pair chromatography, and affinity chromatography.	2
10	Hyphenated Techniques: Introduction to GC-MS and LC-MS techniques and their application in natural products.	2

READING MATERIAL

- 1) Theory and Practice of Chromatographic Techniques, Sanjay B. Bari, Leonard L. Williams, 2019, Pharma Med press / BSP Books.
- 2) Applied Thin Layer Chromatography, 2nd edition, Elke Hahn Deinstrop, 2006, Wiley-VCH
- 3) Thin Layer Chromatography: A Modern Practical Approach, Peter E. Wall, 2005, RSC publishing
- 4) HPLC Made to Measure: A Practical Handbook for Optimization, Stavros Kromidas, 2006, Wiley-VCH
- 5) Practical HPLC method development, Lloyd R. Snyder, Joseph J. Kirkland and Joseph L. Glajch, 1997, John Wiley and Sons.
- 6) HPLC and UHPLC for Practicing Scientists, Michael W. Dong, 2019, Wiley
- 7) Introduction to hyphenated techniques and their applications in pharmacy, Patel, K.N., Patel, J.K., Patel, M.P., Rajput, G.C. and Patel, H.A., 2010, Pharmaceutical methods, 1(1), pp.2-13.doi: 10.4103/2229-4708.72222
- 8) Hyphenated Methods, Mass Spectrometry, Jurgen H. Gross, 2004, SpringerLink, pp 475-494.

Outcomes:

- Design the strategy to purify a small molecule according to its physicochemical properties.
- Select an appropriate chromatographic method (HPLC, GC and TLC etc.) for quantitative and qualitative analysis of an extract/ formulation.
- Express the knowledge of HPLC and its minor troubleshooting.
- Suggest the suitability of LC-MS/GC-MS analysis in complex matrix.

Semester I NP-520 (2 Credit)

S. No.	Phytochemistry	Hrs (40)
1	Role of Natural Products in New Drug Discovery: few selected NPs, with different pharmacophore, its source, purification and its drug target interactions.	2
2	Natural Products: Novel drug templates, chemical diversity, and structure-based drug design	3
3	Case Studies of Plant derived Natural products drugs: Discovery of statins, taxol, cardiac glycosides, vinca alkaloids, morphine, quinine, and phodophylotoxins	7
4	Plant-derived molecules for perfumery, cosmetic, agrochemicals, dyes and pigments	8
5	Advanced Extraction Techniques: (eg. Supercritical fluid extraction; microwave assisted, semi-bionic, Ultrasonication, extraction of volatile oils, Ultrafiltration and green extractions etc.) Isolation of phytochemicals using preparative HPLC; Enrichment processes for particular class of compounds. Retention of nutritional values, its calculations, assay and regulations from source to extracts. Project Cost evaluation.	8
6	Bioassay-directed fractionation of natural products depicting examples.	2
7	Recent developments on Natural Products based adaptogens, immunomodulators, memory enhancers, anti-inflammatory agents, anti- parasitics and related bioassays methods	5
8	Basic understanding of biosynthetic pathways for selected class of Natural Products, impact of molecular biology tools to control these pathways	5

- 1) Phytochemistry of Medicinal Plants, Vol. 29, J.T. Arnason, R. Mata, J. T. Romeo, 1995, Springer Science, Business Media New York
- 2) Medicinal Natural Products: A Biosynthetic Approach, 3rd Edition, P. M. Dewick, 2009, John Wiley & Sons, Ltd.
- 3) From Biosynthesis to Total Synthesis: Strategies and Tactics for Natural Products, A. L. Zografos, 2016, John Wiley & Sons, Ltd.

- 4) Natural Product Biosynthesis: Chemical Logic and Enzymatic Machinery, 1st Edition, C. T. Walsh, Y. Tang, 2017, Royal Society of Chemistry.
- 5) Trease and Evans' Pharmacognosy, 16th Edition, W. C. Evans, 2009, Elsevier.
- 6) Phytochemistry: Vol. 1, Fundamentals, Modern Techniques, and Applications, 1st Edition, C. Egbuna, J. Chinenye Ifemeje, S. C. Udedi, S. Kumar, 2018, CRC Press.
- 7) Studies in Natural Products Chemistry, Vol. 59, 1st Edition, Atta-ur-Rahman, 2018, Elsevier.
- 8) Chemistry of Natural Products, Vol. 6, S. V. Bhat, B.A. Nagasampagi, M. Shivakumar, 2005, Springer US.
- 9) Medicinal Chemistry of Bioactive Natural Products, X. T. Liang, W. S. Fang, 2005, John Wiley & Sons, Inc.

- Get insights into plant derived therapeutic leads, perfumery, cosmetic agents, dyes and pigments.
- Optimize the extraction technique according their chemical class.
- Perform a bioassay guided isolation to improve throughput for identification of potential bioactive natural products.
- Contribute towards the development of herbal formulations for the prophylactic use.

Semester I NP-530 (1 Credit)

S. No.	Synthetic Biology of Medicinal Plants and Agro-technologies	Hrs (20)
1	Medicinal Plant Based Industry: Export and import of plants, threatened/endangered medicinal plants.	3
2	Plant Drug Collection and Cultivation with Plant Growth Regulators : Transgenic plants, and approaches for production of transgenic plants.	2
3	Plant Genome and Genomic Organization: Gene families, genetic regulations in transcription and translation in plants	2
4	Mutations and Mutagenesis: Transposable elements, genetic manipulations and plant genetic engineering	2
5	Cultivation technology for commercial production of some selected medicinal and aromatic plants.	1
6	Tissue Culture Techniques: Micropropagation of medicinal and aromatic plants, secondary metabolism in tissue culture, germplasm storage, methods of cell immobilization.	2
7	Biotechnology of propagation and production of antibiotic and non-antibiotic drugs from lower plants.	2
8	Use of Herbicides: Weedicides and insecticides, microbial phytotoxins as herbicides.	2
9	Indian soils, soil analysis and soil fertilizers.	2
10	Ecology, biodiversity, plant, variety from one area v/s another area, genotypes.	2

READING MATERIAL

- 1) Text book of Industrial Pharmacognosy, First Edition, A. N. Kalia, 2007, C. B. S. Publisher, New Delhi
- 2) Principles of Gene Manipulation, Sixth Edition, S. B. Primrose, R. M. Twyman and R. W. Old, 2004, Blackwell Science.
- 3) Genes IX, Nineteenth Edition, Benjamin Lewin, 2008, Jones & Bartlett, Inc. U.S.A.
- 4) Commercial Cultivation of Medicinal and Aromatic Plants Dhananjay J. Deshpande, 2005, Himalaya Publishing House.
- 5) Elements of Biotechnology, First Edition, P. K. Gupta, 2000, Rastogi Publications, Meerut.
- 6) Genetic Engineering: Principles and Practice, Sandhya Mitra, 2015, Mcgraw Hill Education.

Outcomes:

- Select the sustainable production method for commercially important natural products and express the knowledge of vaccines, antibodies and enzymes derived from plants.
- Design the strategy to improve the yield of secondary metabolites by either transgenic plants or improved cultivation practices.
- Express the knowledge of regulations associated with Medicinal Plant based industries.
- Choose the suitable fertilizer/s according to the soil analysis.

Semester I

NP-540 (1 Credit)

S. No.	Biomimetic synthesis, Total synthesis and semi synthesis of Natural Products-I	Hrs (20)
1	Overview of total synthesis and biomimetic synthesis of natural products with importance in drug discovery	4
2	Retrosynthesis: Introduction to Synthons, Synthetic equivalent groups, Umpolung strategy, Disconnection approaches, Functional group interconversion. Selected examples of retrosynthetic pathways of Natural products such as calanolide, colchicine, camptothecin	3
3	Role of protection and deprotection in natural product synthesis, Commonly utilized reagents for protection/deprotection of functional groups (carbonyl, acids, hydroxyl and amines)	4
4	Leaving groups: Good leaving groups, poor leaving groups, importance to leaving group in elimination and substitution reaction	2
5	Name reactions like Michael reaction, Coupling Reactions, Grignard reaction, Friedel's Crafts Reaction in total synthesis with examples in recent	4
6	Semi-synthesis of Medicinally important natural product such as epothilone, podophyllotoxins	3

READING MATERIAL

1) Total Synthesis of Natural Products, Jie Jack Li and E. J. Corey, 2012, Springer.

2) Organic synthesis: The disconnection approach, 2nd Edition, S. Warren and P. Wyatt, 2008 Wiley.

3) Classics in Total Synthesis: Targets, Strategies, Methods, K.C. Nicolaou and E. J. Sorenson, 1996, Wiley-VCH.

4) Biomimetic Organic Synthesis, Erwan Poupon and Bastien Nay, 2011, Wiley-VCH.

5) Greene's Protective Groups in Organic Synthesis, 4th Edition, Wuts and Greene, 2006, Johnwiley & Sons.

Outcomes:

- Express the role of total synthesis and biomimetic synthesis in natural products research.
- Develop the basic concepts and plan retrosynthesis, protection/deprotection in total synthesis of small molecules.
- Analyze the targeted molecule and propose strategies for semi-synthesis of natural products.

Semester I EL-507 (1 Credit)

S. No.	Biosynthesis of Natural Products	Hrs (20)
1	Secondary Metabolism: Building blocks and construction mechanisms- Alkylation reactions: nucleophilic substitution, electrophilic addition, Wagner- Meerwein rearrangements, Aldol and Claisen reactions, Imine formation and the Mannich reaction, Amino acids and transamination, Decarboxylation reactions, Oxidation and reduction reactions, Phenolic oxidative coupling, Halogenation reactions, Glycosylation reactions.	8
2	The Acetate Pathway: Fatty acids and polyketides	3
3	The Shikimate Pathway: Aromatic amino acids and phenylpropanoids	3
4	The Mevalonate and Methylerythritol Phosphate Pathways: Terpenoids and steroids	3
5	Factors affecting synthesis of secondary metabolites.	3

READING MATERIAL

- 1) Medicinal Natural Products: A Biosynthetic Approach, 3rd Edition, Paul M. Dewick, 2009, Wiley.
- 2) From Biosynthesis to Total Synthesis: Strategies and Tactics for Natural Products, Alexandros L. Zografos, 2016, Wiley.
- 3) Natural Product Biosynthesis: Chemical Logic and Enzymatic Machinery, Christopher T Walsh and Yi Tang, 2017, RSC.
- 4) Trease and Evan's Pharmacognosy, 16th Edition, W.C. Evans, 2009, Elsevier.
- 5) Influence of abiotic stress signals on secondary metabolites in plants. Plant signaling & behavior. Akula R, Ravishankar GA, 2011, 6(11),1720-31.

Outcomes:

- Express the concept of secondary metabolites and their biosynthetic pathways
- Analyze the factors affecting the biosynthesis of secondary metabolites and apply the concept to improve the yield / modification of scaffolds.
- Elucidate the biosynthetic pathways.

Natural Products

M. S. (Pharm.)

Semester II

NP-610 (2 Credit)

S. No.	Natural Product and Bio-Organic Chemistry	Hrs (40)
1	Importance of Marine Natural Products Chemistry in Drug Development : Chemistry and biology of marine natural products, marine chemical ecology, marine biomedicinals and marine toxins from bacteria, microalgae, rhodophyta, chlorophyta, porifera, ascidians, corals, nudibranchs, biosynthesis of marine natural products.	5
2	Bioactive Compounds from Microorganisms: Antibiotics, non-antibiotic drugs from fungal and other microbial sources, microbial phytotoxins.	4
3	Carbohydrates: Mono, di, oligo- and polysaccharides, separation and isolation, purification, structure determination, linkage stereochemistry, biological activity.	4
4	Glycoproteins, lipoproteins and glycopeptidolipids : Structure and biological activity, isolation, purification, degradation, structure determination	3
5	Glycosides and saponins: Classification, separation and isolation, linkage stereochemistry, structure determination, biological activity, study of examples.	3
6	Alkaloids: Classification, methods of isolation, stereochemistry, biological activity, general theory of biogenesis. UV quantification for alkaloids.	6
7	Terpenoids: Classification, methods of isolation, stereochemistry, biological activity, general theory of biogenesis. UV quantification for terpenoids	5
8	Flavonoids: Classification, isolation, stereochemistry, biological activity, biosynthesis. UV quantification for Flavonoids.	4
9	Coumarins and lignans: Classification, isolation, stereochemistry, biological activity, biosynthesis. UV quantification for coumarins.	3
10	Lipids and Prostaglandins: Classification, identification, biological activity, study of examples. Quality of different edible oils.	3

- 1) Pharmacognosy, Phytochemistry, Medicinal Plants, 2nd Edition, Jean Bruneton, 1999, Intercept Ltd. New York.
- Pharmacognosy, Fourth Edition, C. K. Kokate, 2005, Nirali Prakashan, Pune.
 Trease and Evan's Pharmacognosy, 16th Edition, W.C. Evans, 2009, Elsevier.

- 4) Bioactive Marine Natural Products, D.S. Bhakuni and D.S. Rawat, 2005, Springers.
- 5) Natural Product Isolation, Second Edition, In: Methods in Biotechnology Vol 20, Satyajit Sarker, Zahid Latif and Alexander Gray, 2005, Humana Pres Inc., Totowa, NJ.
- 6) Chemistry of Natural Products, 1st Edition, S. V. Bhat, B. A. Nagasampagi and M. Sivakumar, 2008, Narosa Publishing House.
- 7) Chemistry of Plant Natural Products: Stereochemistry, Conformation, Synthesis, Biology, and Medicine, S. K. Talapatra and B. Talapatra, 2015, Springer.

- Get insights of marine and microbial derived natural products.
- Classify natural products according to their chemical structure and their occurrence and to suggest their possible biosynthetic pathways.
- Design the appropriate strategy to isolate and characterize different class of natural products.
- Develop industrially relevant method for quantification of different class of natural products.

Semester II NP-620 (2 Credit)

S. No.	Natural Products based Drug Discovery	Hrs (40)
1	Role of Natural Products (NP) in Drug Discovery: Case studies of taxol, artemisinin, etc	4
2	Ethnopharmacology Based NP Drug Discovery: Case studies of development of drug from folk medicine: e.g. Withaferin A	4
3	Challenges associated with NP drug discovery	2
4	Role of advance instrumentations to overcome NP drug discovery associated challenges; Dereplication, Advancement in NMR, Mass Spectrometry etc.	7
5	New Trends in Field of Natural Product Drug Discovery: Multidisciplinary approach to natural products drug discovery using innovative technologies	4
6	Role of Omics approaches in NP drug discovery; Genomics, Proteomics and Metabolomics	4
7	Combinatorial library for constituents obtained from natural resources, extracts used for developing new drugs.	3
8	Terrestrial, marine and microbial based bioactive scaffolds; role of in silico approaches for finding suitable targets in drug discovery	4
9	Bioactivity: Activity versus toxicity, rapid screening methods, correlation between enzyme inhibition and pharmacological activity, general screening of enzyme, inhibitors; Advances in screening for bioactive components from medicinal plants; e.g. affinity ultrafiltration mass spectrometry, High throughput screening <i>etc.</i>	4
10	Radio Ligand Receptor Binding Assays: Adrenoreceptors, opiate, benzodiazepine, ion channels, 5 HT, dopamine, adenosine, muscarinic, histamine, ATPase, GABA.	4
	Cytotoxicity tests and Bioassay-guided fractionations	

- 1) Lead Generation Approaches in Drug Discovery, Chapter 7: Role of Natural Products in Drug Discovery, Hugo Lachance, Stefan Wetzel, Herbert Waldmann, 2010, Wiley online library.
- 2) Integrated Approach to Nature as Source of New Drug Lead, Open access peer-reviewed chapter, In book: Molecular Insight of Drug Design, Seema Kohli, 2018, Intechopen.
- 3) Innovative Approaches in Drug Discovery, Ethnopharmacology, Systems Biology and Holistic Targeting, 1st edition, Bhushan Patwardhan and Rathnam Chaguturu, 2014, Academic Press is an imprint of Elsevier.

- 4) Natural Products and Drug Discovery An Integrated Approach, 1st edition, Subhash C. Mandal, Vivekananda Mandal and Tetsuya Konishi, 2018, Academic Press is an imprint of Elsevier.
- 5) Natural Products Analysis: Instrumentation, Methods, and Applications, Kindle edition, Vladimir Havlicek, Jaroslav Spizek, 2014, Wiley online library.
- 6) Screening Methods for Detection and Evaluation of Biological Activities of Plant Preparations, in: Bioassay Methods in Natural Product Research and Drug Development, Vol 43, A. J. Vlietinck, 1919, Springer Netherlands.
- 7) Radioligand Binding Assays: Theory and Practice, in: Current Directions in Radiopharmaceutical Research and Development, (Mather SJ ed), Davenport AP and Russell FD, 1996, Springer Netherlands.
- 8) Combinatorial Synthesis of Natural Product-Based Libraries (Critical Reviews in Combinatorial Chemistry), 1st Edition, Armen M. Boldi, 2006, CRC Press.
- 9) Innovative omics-based approaches for prioritisation and targeted isolation of natural products as new strategies for drug discovery, Wolfender J-L, Litaudon M, Touboul D and Queiroz EF, Natural Product Reports, 2019, 36:855-868.
- 10) Omics-based natural product discovery and the lexicon of genome mining, Machado H, Tuttle RN and Jensen PR, Curr Opin Microbiol. 2017 Oct;39:136-142. doi: 10.1016/j.mib.2017.10.025. Epub 2017 Nov 23.

Upon completion of course work, students will be able to

- Rationalize the contribution of natural products in new drug discovery.
- Express the challenges encountered in different stages of natural products based drug discovery.
- Identify the merits of innovative and multidisciplinary approach for the discovery of new lead molecules from different sources of natural products.
- Plan different bioassay screening methods for evaluation of natural products.

Semester II NP-630 (2 Credit)

S. No.	Phytopharmaceuticals and its Standardization Aspects	Hrs (40)
1	Introduction of Phytopharmaceuticals, Nutraceuticals, Herbal Cosmetics, Natural food colours and other value added products from natural resources; product development, advantages, market size and regulations.	6
2	Identification and Authentication of Plant Drugs: Taxonomical Identification of plant, morphological and anatomical description, Natural habitat, geographical distribution of plant, source (wild or cultivated), Season and time of collection, post-harvest processing.	4
3	Quality Control of Plant Drugs: Foreign matter, total ash, acid insoluble ash, Pesticide residue, Heavy metals, Microbial load, Chromatographic finger print with respect to four phytochemical reference markers, bio assay for phytochemicals.	6
4	Process for extraction and subsequent fractionation: Steps involved in processing of plant material by retaining the medicinal and nutritional values (phytochemical active principal ingredient -pAPI). Examples: Spray Drying, Lyophilization and Bead milling.	6
5	Quality specification of pAPI: Details of solvent used, Extractive values, Solvent residue, Microbial load, Heavy metals, Chromatographic finger print profile with respect to reference markers.	4
6	 Biological Activity/ Efficacy Data of pAPI: Primary screen detail [with reference] (target- based/phenotypic with comparator/ standard drug at appropriate concentration); EC₅₀ of pAPI and bioactive Marker, CC₅₀ (cell line used), Selectivity Index (SI). Secondary screen detail (<i>in-vivo</i> model; if more than one, please provide details for all); ED₅₀/dose for curative efficacy, Criterion for Go/No-Go decision (superiority/non-inferiority with standard of care). 	4
7	Stability data of pAPI: Procedures, predictable chemical and galenical changes, technical limitations, testing methods. Stability data of the finished product in the pack intended for marketing.	3
8	Bioavailability and pharmacokinetics (PK) aspects for Phytopharmaceuticals with examples. Phytoequivalence, pharmaceutical equivalence.	3
	PK in mice/rat (dose and route); primary parameters wrt bioactive marker.	
9	Importance of monographs of standards of medicinal plants and their parts, comparative study of BHP, API, Chinese, Japanese Herbal Pharmacopoeia, USP,	4

European pharmacopoeia, US formulary, WHO, CODEX, EMEA and ESCOP guidelines for herbal medicinal products.

Preparation of Drug Master File (DMF) for herbal medicines.

READING MATERIAL

- 1) New Look to Phytomedicine; Advancements in herbal products as novel drugs leads, Mohd Sajjad Ahmad Khan, Iqbal Ahmad, Debprasad Chattopadhyay, 2018, Academic Press.
- 2) Therapeutic Medicinal Plants: From Lab to the Market, Marta Cristina Teixeira Duarte and Mahendra Rai, 2016, Taylor and Francis group, CRC.
- 3) Herbal Drugs and Phytopharmaceuticals: A Handbook for Practice on a Scientific Basis, Franz-Christian Czygan, 2004, CRC press.
- 4) Taxonomy of Angiosperms A.V. S. S. Sambamurt K., 2008, International Pvt. Ltd., New Delhi
- 5) Textbook of Industrial Pharmacognosy, First Edition, A. N. Kalia, 2007, C. B. S. Publisher, New Delhi.
- 6) Advanced Plant Taxonomy A. K. Mondal, 2016, New Central Book Agency (P) Ltd.
- 7) Quality Control Herbal Drugs An Approach to Evaluation of Botanicals, First Edition, Pulok K. Mukherjee, 2002, Business Horizons, New Delhi.
- 8) Laboratory Handbook for the Fractionation of Natural Extracts, First Edition, Houghton PJ and Amala Raman, 1998, Chapman & Hall, London.
- 9) Standardisation of Botanicals: Testing and Extraction Methods of Medicinal Herbs, Vol. 1, 2nd Edition, V. Rajpal, 2011, Bio-Green Books.

Outcomes:

- Design the strategy to standardized the natural products based formulations such as Phytopharmaceuticals, Nutraceuticals, and Herbal Cosmetics.
- Propose an environment friendly and cost effective extraction process for development of herbal medicines.
- Contribute to the preparation of stability study protocols for herbal based finished products.
- Communicate the knowledge of quality aspects mentioned in the monographs in pharmacopeia's such as USP, EP etc.

Semester II NP-640 (2 Credit)

S. No.	Structure Elucidation of Natural Products	Hrs (40)
1	Structure Elucidation of Natural Products: General strategies for structure elucidation of natural products with few examples	3
2	Chemical Methods for identification of the following class of phytoconstituents: Alkaloids Steroids Flavonoids/ Polyphenols/Tannins Terpenoids Polyketides Proteins/Peptides Saponins Note: The procedure along with mechanism involved in the mentioned methods should be discussed along with its applications and limitations	3
3	Mass Spectroscopy: Applications in structure elucidation with examples include MALDI TOF Introduction to nitrogen rule, mass defect, and neutral loss/diagnostic fragment ions filtering methods etc.	6
4	¹ H NMR and ¹³ C NMR Spectroscopy: Chemical shifts, coupling constant, advanced 1D NMR experiments such as NOE, DEPT, D ₂ O exchange experiment. Quantitative NMR methods.	6
5	Homonuclear 2D NMR: ¹ H- ¹ H COSY, NOESY, DQF-COSY, TOCSY, ¹³ C- ¹³ C correlations INADEQUATE.	4
6	Heteronuclear 2D NMR: HSQC/HMQC, HMBC	3
7	Optical and Chiroptical Techniques: CD, Circular birefringence and circular dichroism, and cotton effect.	3
8	Structure Elucidation: Case studies with examples from alkaloids, flavonoids, sterols, coumarins, triterpenes, and xanthones.	12

- 1) Spectrometric Identification of Organic compounds, 8th Edition, R. M. Silverstein, F. X. Webster, D. J. Kiemle, John Wiley & Sons Inc. 2015, P. S. Kalsi, New Age Publishers, New Delhi.
- 2) Organic Chemistry, Vol I: The Fundamental Principles, 6th Edition, I. L. Finar, 2006, Darling Kindersley (India) Pvt. Ltd.
- 3) Phytochemical Methods, 2nd Edition, J. B. Harborne, 1984, Springer, Dordrecht.
- 4) Classical Methods in Structure Elucidation of Natural Products, R. W. Hoffmann, 2018, Hoffmann, Wiley

- 5) Modern NMR Approaches to the Structure Elucidation of Natural Products: Vol. 2: Data Acquisition and Applications to Compound Classes, R. R. Gil and A. Navarro-Vázquez, 2014, RSC.
- 6) Natural Products Chemistry III, Atta-ur-Rahman, 1988, Springer link.
- 7) One and Two Dimensional NMR Spectroscopy, Atta-ur-Rahman, 1989, Elsevier
- 8) Organic Structure Analysis, P. Crews, J. Rodriquez, M. Jaspars, 2009, Oxford University Press.

- Detect different class of natural products using simple chemical methods.
- Predict the plausible empirical formula based on accurate mass analysis.
- Choose and apply appropriate 1D and 2D NMR experiments to elucidate the structure of small molecules.
- Utilize optical and chiroptical techniques to establish stereochemistry of unknown compound.

Semester II NP-650 (1 Credit)

S. No.	Biomimetic Synthesis, Total synthesis and semi-synthesis of Natural Products – II	Hrs (20)
1	Concepts for Efficiency in the Total Synthesis of Natural Products: Selectivity, Atom and step economy, multicomponent reaction, convergent synthesis, etc.	3
2	Modern strategies and Technologies in Natural Product Synthesis: Visible-Light Photochemistry, Flow Chemistry, C-H functionalization, etc. recent examples of each strategies reported in literature.	
3	Introduction to Renewable Resource-Based Building Blocks/Chirons for the Total Synthesis of Natural Products: examples based on Natural Chirons (amino acids and carbohydrates)	
4	Total synthesis of selected natural products such as Taxol, Prostaglandins (PGF _{2α} , PGF _{E2}) with their retrosynthetic approaches. Mechanism of important reaction steps involved in total synthesis.	5
5	Semi-synthesis/biomimetic synthesis of important natural products (Indole alkaloids, quinoline alkaloids, lignans, etc.) and structural diversification for drug discovery	

READING MATERIAL

- 1) Efficiency in natural product total synthesis / edited by Pei-Qiang Huang, Zhu-Jun Yao, Richard P. Hsung, 2018, Wiley.
- 2) Total Synthesis of Natural Products, Jie Jack Li and E.J. Corey, 2012, Springer.
- 3) Classics in Total Synthesis: Targets, Strategies, Methods, K.C. Nicolaou and E. J. Sorenson, 1996, Wiley-VCH
- 4) Biomimetic Organic Synthesis: Erwan Poupon and Bastien Nay, 2011, Wiley-VCH.
- 5) Chemistry of Natural Products, 1st Edition, S. V. Bhat, B. A. Nagasampagi and M. Sivakumar, 2008, Arosa Publishing House.

Outcomes:

- Get insight into the total synthesis, structural modification of bioactive leads.
- Plan various approaches for efficient natural product synthesis including biomimetic synthesis, semi-synthesis and total synthesis.
- Design the convenient synthetic route for potential natural products analogues to support the structure activity relationship (SAR) study.

Semester II

EL-606 (1 Credit)

S. No.	Introduction to Ayurveda and Polyherbal Formulations	Hrs (20)
1	History of Ayurveda and herbal drugs, concept of Ayurveda, Ayurvedic philosophy of health, disease and treatment.	2
2	Global Ayurvedic Medicine Market: Size, share, trend and forecast including organic herbs & extracts (NOP, USDA etc.).	2
3	Ayurvedic /Polyherbal Formulations (PHF): Types of Ayurvedic formulations, single herb vs polyherbal formulations, Advantages and challenges associated with PHF.	3
4	Preparation and detoxification methods for Ayurvedic formulations.	2
5	CCRAS Guidelines for Ayurvedic Formulation: development, standardization, quality assurance, toxicity and clinical evaluation.	3
6	Amendments in Drugs and Cosmetic Act for quality control of Ayurvedic medicines.	2
7	Government policies and initiatives for development of Ayurveda.	2
8	Introduction to Ministry of AYUSH and its Allied Organizations: Pharmacopoeia Commission for Indian Medicine & Homoeopathy, Central Council for Research in Ayurvedic Sciences (CCRAS), National Medicinal plant board (NMPB). FSSAI Sustainability of Indian medicinal plants- CITES and Indian Govt. initiatives.	2
9	Case paper of an herb of commerce by students-Herb, herb processing, extraction, standardization by gravimetric and hyphenated techniques, process patents & important commercial suppliers.	2

- 1) An introduction to Ayurveda, M.S. Valiathan, 2013, Orient Blackswan Private Limited New Delhi.
- 2) Ayurveda, the Science of Self-healing: A Practical Guide, 2nd edition, Vasant lad, 1987, Lotus Press.
- 3) Ayurvedic Healing: A Comprehensive Guide, Revised edition, David Frawley, 2012, Lotus Press
- 4) Prakriti: Your Ayurvedic Constitution, 2 Revised edition, Svoboda, Dr. Robert, 1998, Lotus Press.
- 5) Handbook of Ayurvedic Medicines with Formulation, Eiri Board, 2009, Engineers India Research Institute.
- 6) Regulatory and Pharmacological Basis of Ayurvedic Formulations, Kindle edition, Amritpal Singh, 2016, CRC Press.

- 7) General guidelines for Drug development of Ayurvedic formulations, Guidelines Series-I, Central Council For Research In Ayurvedic Sciences, Ministry Of Ayush, Government of India, New Delhi. (Accessed on 04 May 2020)
- 8) <u>http://ayush.gov.in/</u> (Accessed on 04 May 2020)
- 9) <u>http://www.fao.org/3/af285e/af285e00.pdf</u> (Accessed on 04 May 2020)
- 10) <u>https://www.nutraingredients.com/Article/2019/12/16/NutraIngredients-2019-review-</u> predictions-vs.reality-part-1 (Accessed on 04 May 2020)
- 11) https://www.cites.org/ (Accessed on 04 May 2020)

Upon completion of course work, students will be able to

- Define the concepts of Ayurveda and its treatment philosophy.
- Express the global demand of Ayurvedic medicines.
- Get insights into quality standards mentioned in the herbal pharmacopeia; various challenges associated with its quality and efficacy.
- Execute the preparation of polyherbal formulations as per the standard Ayurvedic texts.
- Convey the regulatory guidelines of Government authorities related to Ayurvedic medicines.